Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision
نویسندگان
چکیده
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders.
منابع مشابه
بررسی اثرات خستگی عضلات زانو و مچ پا بر روی نیروی گشتاوری مفصل مچ پا و مرکز اعمال نیروی کف پایی در طی فاز نامتعادل ایستادن یک پایی
Background: The aim of this study was to investigate the effect of muscle fatigue on ankle joint moment and center of pressure during single-leg stance, perturbed by forward or backward platform perturbations. Methods : In this semi-experimental study fatigue induced to knee muscles by using an ergometer (monark). Surface elecromyographic signals were recorded from knee muscles during maxim...
متن کاملThe Effect of Five-Toed Shoes on Electromyographic Activity of Leg Muscles During Stance Phase of Running
Purpose: The current study aimed at evaluating the effect of 5-toed shoes on electromyographic activity of leg muscles during the stance phase of running. Methods: The current semi-experimental study recorded the electromyographic activity of tibialis anterior, soleus, gastrocnemius lateralis, and medialis muscles of 15 healthy male students (mean age: 24.5±3.4 years, mean height:...
متن کاملThe Changes of Leg Musclus Activities Following Increase of Gait Velocity
Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...
متن کاملCortical Activity During Postural Recovery in Response to Predictable and Unpredictable Perturbations in Healthy Young and Older Adults: A Quantitative EEG Assessment
Introduction: To investigate the effects of predictable and unpredictable external perturbations on cortical activity in healthy young and older adults. Methods: Twenty healthy older and 19 healthy young adults were exposed to predictable and unpredictable external perturbations, and their cortical activity upon postural recovery was measured using a 32-channel quantitative encephalography. Th...
متن کاملInterlimb communication following unexpected changes in treadmill velocity during human walking.
Interlimb reflexes play an important role in human walking, particularly when dynamic stability is threatened by external perturbations or changes in the walking surface. Interlimb reflexes have recently been demonstrated in the contralateral biceps femoris (cBF) following knee joint rotations applied to the ipsilateral leg (iKnee) during the late stance phase of human gait (Stevenson AJ, Geert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016